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Restricted diffusion of water in a highly concentrated w/o emul-
sion was studied using pulsed field gradient spin echo techniques.
The standard two-pulse version of this technique, suitable for ana-
lysis in the time domain, fails to investigate the short time-scale
for diffusion inside a single emulsion droplet with radius 0.7 µm.
With a pulse-train technique, originally introduced by Callaghan
and Stepisnik, shorter time-scales are accessible. The latter ap-
proach is analyzed in the frequency domain and yields frequency
dependent diffusion coefficients. Predictions for the outcome of
the experiment were calculated in the time domain using the
Gaussian phase distribution and the pore hopping formalism ex-
pressions for the echo attenuation. The results of these calcula-
tions were transformed to the frequency domain via a numerical
inverse integral transform in order to compare with the experimen-
tal results. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Pulsed field gradient (PFG) spin echo (SE) or stimulated echo
(STE) NMR is a well-established technique to noninvasively
study molecular motion. The most widely used methods rely on
the application of two sharp magnetic field gradient pulses which
define the beginning and the end of the diffusion time (1, 2).
The first pulse labels the position of the diffusing molecules and
the second pulse reads the displacement that has occurred dur-
ing the diffusion time. The observed echo intensities are conve-
niently analyzed in the time domain with a propagator formalism
(2, 3). The molecular displacements can be probed over a wide
range of time-scales by varying the distance between the two
gradient pulses. The time-dependent diffusion coefficient and
mean square displacement of a fluid imbibed in a porous matrix
contain information on the porous structure, such as surface to
volume ratio, pore size, and tortuosity (4–7). The longest diffu-
sion time that can be observed is limited by the magnitude of
the relaxation times. The shortest time accessible is set by in-
strumental limitations, i.e., the difficulty of applying strong and
matched magnetic field gradient pulses without generating eddy
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currents. It is also necessary to keep the gradient pulse length
much shorter than the diffusion time for the standard propa-
gator formalism to be valid. An alternative to performing the
two-pulse experiment as a function of diffusion time is to take
advantage of diffraction-like effects on plots of echo intensity
vs the reciprocal space vector q defined by the strength and du-
ration of the gradient pulse (8). The diffraction-like features can
be related to the characteristic distances in the sample, such as
pore size and interpore distance.

A different approach to analyze molecular motion is to use
a frequency-dependent diffusion coefficient spectrum, which
is the Fourier spectrum of the translational velocity auto-
correlation function (9). The diffusion spectrum can be probed
with a train of gradient pulses where the frequency is adjusted
by changing the separation between the pulses. In the case of
unrestricted diffusion of small molecules the spectrum is flat for
the frequencies experimentally accessible. For molecules expe-
riencing barriers for the diffusive motion, the time between wall
collisions gives rise to additional features of the diffusion spec-
trum. This has been demonstrated on a water-saturated packed
bed of 15-µm radius polystyrene spheres (10). The use of a
train of gradient pulses has been shown to extend the effective
time-scale of NMR diffusion measurements to below 1 ms (11).

In this article we examine a system with micrometer-size
water compartments separated by a thin oil and surfactant film,
i.e., a highly concentrated w/o emulsion. With the use of two-
pulse and pulse-train experiments the observational time-scales
are adjusted such that both inter- and intracompartment diffu-
sion are probed. Previous NMR studies of highly concentrated
emulsions include the works of Balinov et al. (12), where the
apparent water diffusion coefficient was related to the perme-
ability of the oil and surfactant film, and Håkansson et al. (13),
where methods to determine the compartment size using q-space
diffusion diffractograms were developed.

THEORY

The PFG STE experiment, shown in Fig. 1, consists of a prepa-
ration interval where the first gradient pulse labels the spins
with a positionally dependent phase shift and a read interval
where the second gradient pulse reverses the phase shift with the
5 1090-7807/02 $35.00
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FIG. 1. The pulsed field gradient stimulated echo experiment. G and δ are
the amplitude and length of the magnetic field gradient pulses. � is the time
between the leading edges of the gradient pulses.

same amount for the same position in space. Diffusion between
the preparation and read intervals results in an incomplete phase
reversal and an attenuation of the echo. The molecular displace-
ments taking place in the time between the gradient pulses are
quantified with the propagator P(Z , t) which describes the prob-
ability that a spin has the displacement Z along the gradient
direction during the time t . The echo attenuation E is given
by (8)

E =
∫

P(Z , t)eiγ GδZ dZ, [1]

where γ is the gyromagnetic ratio, G is the gradient strength,
and δ is the gradient pulse length. Through a series expansion of
the exponential in Eq. [1] it can be shown that the low-Gδ part
of the echo attenuation obeys

E = e−(γ Gδ)2〈Z2〉/2 [2]

irrespective of the actual shape of P(Z , t) (as long as the average
displacement 〈Z〉 is zero). The mean square displacement 〈Z2〉
can be determined from the initial slope of a plot of ln E vs
(γ Gδ)2/2 and an apparent diffusion coefficient Dt(t) is defined
as

Dt(t) = 〈Z2〉
2t

, [3]

where t = � − δ/3. For free diffusion Dt (t) equals the true
self-diffusion coefficient and is independent of t .

The diffusion spectrum Dω(ω) is the Fourier spectrum of the
velocity auto-correlation function 〈ν(0)ν(t)〉

Dω(ω) =
∞∫

0

〈ν(0)ν(t)〉eiωt dt . [4]

2
The diffusion spectrum is sampled by |F(ω)| which is the fre-
quency spectrum of the time integral of the effective gradient
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FIG. 2. The single lobe/ac modulation pulse-train sequence. The build-
ing block of the sequence is four gradient pulses and two 180◦ pulses in the
period T. This part is repeated N times. An extra repetition without gradients is
inserted before echo acquisition in order to allow for settling of eddy currents
and activation of the blanking unit.

wave form G(t)

F(ω) = γ

t∫
0




t ′∫
0

G(t ′′) dt ′′


eiωt dt ′. [5]

|F(ω)|2 for the two-pulse experiment is given by (9)

|F(ω)|2 =
[
γ Gδ�

sin(ω�/2) sin(ωδ/2)

(ω�/2)(ωδ/2)

]2

. [6]

As can be seen in Fig. 3 the sampling is dominated by the zero
frequency lobe. The two-pulse experiment is thus inappropriate
for frequency analysis. The single lobe/ac rectangular modula-
tion sequence, shown in Fig. 2, has an ideal sampling function

|F(ω)|2 =
[

2γ Gδ
sin(NωT /2) sin(ωT /8)

ω cos(ωT /4)

]2

, [7]

FIG. 3. |F(ω)|2 for the pulse sequences in Figs. 1 and 2. Solid line: two-
pulse experiment evaluated with Eq. [6] using � = 10 ms and δ = 0.5 ms. Dashed

line: pulse-train experiment evaluated with Eq. [7] using T = 10 ms and N = 10.
The curves are normalized with respect to the maximum value.
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gradients before the PFG STE sequence, but none were tried
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where |F(ω)|2 can be considered as a delta function at ω =
2π/T for sufficiently high values of N . The echo attenuation
for this sequence is given by (11)

E = e− 1
2 N T (γ Gδ)2 Dω(2π/T ), [8]

where the symbols are defined in Fig. 2. Here the attenuation
does not only depend on Gδ and T , but also on N . Instead of
increasing Gδ when using smaller values of T it is possible to
increase N to get the desired attenuation.

The mean square displacement evaluated from the diffusion
spectrum is (14)

〈Z2〉 = 2

π

∞∫
0

Dω(ω)

[
sin(ωt/2)

ω/2

]2

dω, [9]

which reduces to 〈Z2〉 = 2Dt for constant Dω(ω) = D. From
Eqs. [3] and [9] a relation between the diffusion coefficient de-
termined with the two-pulse and pulse-train methods is obtained

Dt(t)t = 1

π

∞∫
0

Dω(ω)

[
sin(ωt/2)

ω/2

]2

dω, [10]

which can be rearranged to

Dt(t) = t

π

∞∫
0

Dω(ω) sinc2(ωt/2) dω. [11]

EXPERIMENTAL

Materials and Emulsion Preparation

Heptane of p.a. quality was purchased from Merck. The sur-
factant oligoethylene glycol dodecyl ether (C12EO4) was ob-
tained from Nikko Chemicals, Japan. Lucas Meyer supplied
soybean phosphatidylcholine with the trade name Epicuron 200.
Brine was made of NaCl from Riedel–de Haen and Millipore
water.

The emulsion composition was 96 wt% brine (1 wt% NaCl
in Millipore water), 2.3 wt% heptane, 1.4 wt% C12EO4, and
0.3 wt% phosphatidylcholine. The water phase was added drop-
wise to the oil phase in a glass tube containing seven glass beads
while shaking on a mixer. When the emulsion became viscous
the shaking was done by hand. From diffusion diffractograms
it could be concluded that the emulsion was stable during the
time for the NMR experiments (16 h). The emulsion was aged
at room temperature for 10 days before the second set of exper-

iments was performed.
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NMR Experiments

The NMR experiments were performed at 25.0◦C using a
Bruker DMX 200 spectrometer operating at 200.13-MHz pro-
ton resonance frequency. The 90◦ pulse length was 3.6 µs. The
magnet was equipped with a Bruker DIFF-25 gradient probe
driven by a Bruker BAFPA-40 unit. The gradient strength was
calibrated from a set of PFG STE experiments using normal
water, heavy water, and dodecane.

The apparent self-diffusion coefficient of water Dt(t) was
measured with a PFG STE pulse sequence. δ was 0.5 ms and the
diffusion time t was varied between 10 ms and 10 s. For each
value of t the gradient was stepped up linearly to a maximum
strength Gmax. For each value of t , Gmax was adjusted to keep
G2

maxt constant. Gmax was 3.03 T/m at the shortest value of t .
The diffusion spectrum of water Dω(ω) was measured us-

ing the single lobe/ac rectangular modulation sequence with
δ = 100 µs, N values from 4 to 18, and T values between 2 and
100 ms. As in the two-pulse experiment the gradient strength was
adjusted to keep G2T constant. G was 9.59 T/m at the shortest
value of T . To correct for transverse relaxation, each experi-
mental echo intensity was normalized with the intensity for an
equivalent experiment without gradients. To account for the im-
perfect rectangular shape of the rather short gradient pulses, a
(frequency-independent) value of the effective Gδ was estimated
by adjusting the free water Dω(ω) between 100 and 500 Hz to the
literature value. The effective Gδ was found to be 5.1% larger
than the nominal.

The diffusion diffractograms were recorded with the PFG STE
sequence using t = 33.8 ms and Gmax = 9.59 T/m. δ was 3 ms
for the fresh and 1.5 ms for the aged emulsion.

Noise from the gradient driver necessitated the use of a blank-
ing unit during signal acquisition. For the two-pulse experiments
the unit was opened 150 µs before and closed 150 µs after each
gradient pulse. The rapid switching of gradients in the pulse-
train experiment prohibited the use of the blanking unit between
each gradient pulse. In this case the unit was opened before the
first 90◦ pulse and closed before signal acquisition during the
delay between the two extra 180◦ pulses inserted for this purpose
(cf. Fig. 2).

RESULTS AND DISCUSSION

Experimental Results

In Figs. 4 and 5 we display the results of the two-pulse and
pulse-train experiments. The former is reliable at values of t
larger than 10 ms, while the latter works best for ω/2π between
70 and 500 Hz. The lower limit of the two-pulse experiment
is set by mismatch between the two gradients due to the finite
time required for the gradient driver to recharge after a strong
gradient pulse. We note that there exists methods to overcome
this problem, e.g., PGSE-MASSEY (15) or a train of dummy
here. With the pulse-train method it was possible to observe
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FIG. 4. The time-dependent diffusion coefficient Dt(t) for free water (cir-
cles) and water confined within emulsion droplets in a highly concentrated fresh
(squares) and aged (triangles) emulsion. The two lower lines are calculated us-
ing the GPD approximation for short times and the PH formalism for long times
(see text for details). The upper line is the value of D for free water.

frequencies as high as 500 Hz, corresponding to a diffusion
time of 2 ms. Callaghan and Stepisnik (11) used frequencies up
to 1667 Hz. Our attempts with such high frequencies resulted in
a dramatic signal loss due to eddy currents after the pulse. The
residual gradients lead to a slice selection with the subsequent
180◦ pulse.

For the free water both methods yield a constant value for the
water self-diffusion coefficient D as expected. A closer inspec-
tion of Fig. 5 reveals a slight decrease of Dω(ω) at the highest
frequencies. This was also observed by Callaghan and Stepisnik
(11) who attributed it to the finite rise time of the gradient leading
to a slightly smaller value of Gδ at higher frequencies. By using
a fixed value of Dω(ω) for free water it is possible to calculate an
effective Gδ for each frequency. Since the effect is minor no such
correction was made. For lower frequencies the experiment is
less accurate because of the increasing influence of T2 relaxation.
This is more severe for the emulsion, not because of different
T2, but because of the order of magnitude slower long-range
diffusion. Increasing the gradient strength and decreasing N

FIG. 5. The frequency-dependent diffusion coefficient Dω(ω) for free water
(circles) and water confined within emulsion droplets in a highly concentrated
fresh (squares) and aged (triangles) emulsion. The two lower lines are calculated

according to the flow-scheme in Fig. 9. The upper line is the value of D for free
water.
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is not a solution to this problem since N must be above a
certain level if the sampling of Dω(ω) should occur at a suf-
ficiently narrow range of frequencies (cf. Eq. [7]). The large
scatter for all samples at 50 Hz we attribute to disturbances from
the power supply. For the emulsions Dt(t) is almost constant
with the two-pulse method. At the shorter time-scales accessi-
ble with the pulse-train method a significant increase of Dω(ω)
is observable.

At this stage we want to relate the experimental results to the
characteristic length- and time-scales for water diffusion in the
emulsion. As discussed by Callaghan and Coy (16), the effect
of restrictions for the diffusing molecules is conveniently han-
dled with a propagator formalism. Due to the limitations of the
two-pulse method we were forced to use the pulse-train method
to access the shorter time-scales. We will first calculate Dt(t),
using a reasonable model for the structure of and water diffu-
sion in a concentrated emulsion, and then convert it to Dω(ω)
and compare both quantities with the experimental data.

Calculation of Dt (t)

For molecules diffusing in a porous medium different time-
scales can be distinguished. First we consider an isolated pore
with size a. At short t, 〈Z2〉1/2 � a and few molecules are influ-
enced by the restrictions implying that Dt(t) ≈ Db, where Db is
the bulk diffusion coefficient in the absence of barriers. At inter-
mediate t, 〈Z2〉1/2 ≈ a and Dt(t) is decreasing with increasing
t due to the increasing number of molecules that reach the bar-
riers. In the case of nonpermeable pore walls 〈Z2〉1/2 reaches
a constant value at long t . This value is related to a and the
pore shape. For spherical pores the long-time limit of 〈Z2〉1/2

is
√

2/5a, where a is the pore radius (16). In the case of per-
meable walls or connections between the pores, the diffusion
coefficient reaches a constant value Dp reflecting the long range
permeability. For discrete pores separated with a distance b there
exists an intermediate diffusion time regime where the diffusing
molecules sample a limited number of pores. At this time-scale
diffraction-like effects can be observed in the echo-attenuation
plots of intensity vs the reciprocal space vector q = γ Gδ/2π

(13). The position of the first maximum is inversely related to
the distance between the center of neighboring pores b. The
water droplets in a highly concentrated emulsion have a poly-
hedral shape but can be approximated as a sphere with radius
a. Due to the limited size of the film separating the droplets
we may write b = 2a. In Fig. 6 we display experimental echo-
attenuation plots. The first maximum occurs at q ≈ 7 · 105 m−1

for the fresh and q ≈ 3 · 105 m−1 for the aged emulsion. In-
verting these values we obtain an estimate of b,from which a is
calculated. The values can be found in Table 1. To proceed we
define the characteristic time for restricted diffusion inside the
droplets τa

a2
τa =
2Db

[12]
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account for the permeability of the film separating the droplets
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FIG. 6. Diffusion diffractogram with water signal intensity vs the reciprocal
space vector q for a fresh (squares) and aged (triangles) highly concentrated
emulsion. The droplet size is determined from the position of the first local
maximum.

and the characteristic time for diffusion between the droplets τb

τb = b2

2Dp
. [13]

For the gradient calibration we used Db = 2.3 · 10−9 m2/s (17)
and from Fig. 4 we get Dp ≈ 1.4 · 10−10 m2/s for the fresh and
Dp ≈ 2.4 · 10−10 m2/s for the aged emulsion. Inserting these
values in Eqs. [12] and [13] gives estimates of τa and τb. The
values are summarized in Table 1. In analogy with the reasoning
above the regime of unrestricted diffusion is then observed at
t � τa and the long-time limit is reached when t � τb. Restricted
diffusion inside a droplet occurs when t is on the order of 0.1 ms
and the water molecules sample a limited number of droplets
when t is on the order of 10 ms. Since τb � τa the pore hopping
(PH) formalism of Callaghan (8) can be used to describe the
regime of t around 10 ms. With this approach it is assumed
that each molecule entering a pore stays there long enough to
have equal probability of being anywhere within the pore, before
migrating to the next pore.

There exists expressions for Dt(t) in the short-time (4) and
long-time limit (7). An interpolation between the two limits has
been used to describe the full range of t (6). For certain simple
pore geometries, i.e., planar, cylindrical, and spherical geometry,

TABLE 1
Structural Parameters for the Fresh and Aged

Emulsions Estimated from the Diffractogram
and PFG STE Experiments

Fresh Aged

a/µm 0.71 1.7
b/µm 1.4 3.4
Dp/m2/s 1.4 · 10−10 2.4 · 10−10

τa/ms 0.11 0.60

τb/ms 7.3 23
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FIG. 7. Calculated 〈Z2〉 and Dt(t) using the GPD approximation (solid
line) and the PH formalism (broken line) using parameters relevant for the fresh
emulsion.

there exist expressions for the echo attenuation at all values of t
(18). The initial slope of a calculated echo-attenuation curve can
be used to numerically evaluate 〈Z2〉 and Dt(t) through Eqs. [2]
and [3]. An example of such a calculation is displayed in Fig. 7
for spherical pores with radius 0.71 µm. For the calculation we
used the Gaussian phase distribution (GPD) approximation for
molecules diffusing in a spherical cavity with reflecting walls
(19)

ln E = −2γ 2G2

Db

∞∑
m=1

α−4
m

α2
ma2 − 2

[14]×




2δ−

2+ exp
[−α2

m Db(�−δ)
]−2 exp

(−α2
m Dbδ

)
− 2 exp

(−α2
m Db�

)+ exp
[−α2

m Db(�+δ)
]

α2
m Db




,

where αm is the mth root of the Bessel equation 1/(αa)
J3/2(αa) = J5/2(αa). As can be seen in Fig. 7, Dt(t) starts to
drop from Db for t orders of magnitude smaller than τa. When
t = τa, Dt(t) is slightly less than Db/2 and 〈Z2〉1/2 reaches a
constant value

√
2/5a. At longer t , Dt (t) goes toward zero. To
we use the PH formalism (16) to calculate Dt (t) in an analogous



E

FIG. 8. (a) Dω(ω) calculated by solving Eq. [18] usingDt(t) from Fig. 7.
200 TOPGAARD, MELAND

way from the expression for a pore glass with spherical pores (8)

E = 9 [sin(γ Gδa) − γ Gδa cos(γ Gδa)]2

(γ Gδa)6

× exp

[
−6Dp�

b2

(
1 − sin(γ Gδb)

γ Gδb

)]
. [15]

In Fig. 7 we show that at t longer than τb, Dt(t) is equal to Dp.
For shorter t , Dt (t) is larger and 〈Z2〉1/2 is approaching

√
2/5a.

The PH model is valid when the molecules have equilibrated
their positions within the pore and an absolute lower limit for
this is τa. To model our experimental system we use the isolated
pore model when t < τa/2 and the PH formalism when t > 3τa,
neglecting the region in between where neither model is valid.

Conversion of Dt (t) to Dω(ω)

From Fig. 7 it is clear that we cannot expect to observe the
restricted diffusion regime with the standard PFG STE experi-
ment, given that the shortest experimentally available diffusion
time with our equipment is 10 ms. Instead, it is necessary to
use the pulse-train method. A problem then arises, since most
of the theory relating to restricted diffusion is handled with a
propagator formalism and not with a diffusion spectrum. Equa-
tion [11] constitutes a relation between the diffusion coefficients
determined with the two types of experiments. The transforma-
tion from Dω(ω) to Dt(t) involves an integral transform with the
kernel sinc2 and the limits zero and infinity. In practice the inte-
gral is dominated by the low frequency region up to ω = 2π/t
where the kernel has a minimum at zero (sinc2(π ) = 0). Ninety
percent of the kernel area is within this region. The higher fre-
quency region still contributes a significant amount to Dt(t),
which makes it difficult to numerically transform experimen-
tal diffusion spectra. Theoretical expressions for the full range
of Dω(ω) are readily transformed using numerical integration.
The reverse operation is substantially more difficult. In the fol-
lowing section we perform the inverse integral transform by a
technique similar to the ones used to make numerical inverse
Laplace transforms (20, 21).

To evaluate Dt(t) numerically, Eq. [11] must be discretized.
One way to do this is by assuming that Dω(ω) is piecewise
constant giving

Dt(ti ) =
N∑

j=1

Ai j Dω(ω j ), [16]

where

Ai j = ti
π

sinc2(ω j ti/2)�ω j [17]

and �ω j is the length of the piece around ω j . Once a proper
choice of ω j has been made the whole set of Dt(ti ) can be cal-
culated through
Dt = ADω, [18]
R, AND SÖDERMAN

where Dt is a column vector with length M and elements Dt(ti ),
Dω is a column vector with length N and elements Dω(ω j ),
and A is a M × N matrix with elements Ai j . In our calcu-
lations we have typically used N = 300 with ω j in a geomet-
ric series between 2π/tM and 1000 · 2π/t1. The calculation of
Dt was described in the previous section. With the Optimiza-
tion Toolbox in MATLAB the elements of Dω were varied until∑

i [(Dt)i − (ADω)i ]
2 reached a minimum. In practice it is nec-

essary to force the solution to satisfy a series of constraints in
order to get a physically reasonable result. The set of constraints
used were as follows: (1) the solution is limited to the region
between Dp and Db, (2) the solution is monotonically increas-
ing, (3) the first and final values are fixed to Dp and Db, and (4)
the solution is smoothed by a simultaneous minimization of the
sum of the squares of the difference between adjacent points.

In Fig. 8a we show Dω(ω) obtained by the inverse integral
transform of Dt(t) calculated in the previous section. As can be
seen in Fig. 8b the fit is more or less perfect. The appearance of
Dω(ω) is, however, strongly dependent on the constraints used in
the calculation, implying that Dω(ω) presented in Fig. 8a is only
one in a family of solutions. Until there has been more progress
in the description of Dω(ω) for restricted diffusion it is difficult
to assess the validity of the results in Fig. 8. A flow-scheme for
the calculation of Dω (ω) is presented in Fig. 9.

In Fig. 5 we compare the calculated Dω(ω) with the exper-
imental results. Considering the approximations both in the
calculation of Dt(t) and in the transformation to Dω(ω) the
(b) Points, selected values of Dt(t) from Fig. 7; line, fitted values.
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FIG. 9. Flow-scheme for the calculation of Dω(ω).

agreement is good. Note that there is no adjustable parameter in
the calculation of Dω(ω). The input parameters are determined
with independent NMR experiments.

To be able to observe the high frequency plateau it is necessary
to use frequencies above 10 kHz, which in principle can be
obtained by using the static gradients at the fringe field of a
superconducting magnet (9). In this case the limit is not set by
the time required to switch the gradient pulses. Here the problem
is the signal loss due to slice selection from the strong gradients
present during the RF pulses.

CONCLUSIONS

The modulated gradient technique proposed by Callaghan and
Stepisnik was used to observe the regime of restricted diffusion
of water inside the droplets of a highly concentrated w/o emul-
sion. Theoretical self-diffusion coefficients were converted from
the time to the frequency domain with a numerical inverse inte-
gral transform in order to compare with the experimental results.
With the modulated gradient technique it is possible to observe
shorter time-scales than with the traditional PFG STE technique.

ACKNOWLEDGMENTS
This work was financially supported by the SSF Programme Colloid and
Interface Technology and the Swedish Research Council.
Y OF WATER IN EMULSIONS 201

REFERENCES

1. E. O. Stejskal and J. E. Tanner, Spin diffusion measurements: Spin echoes in
the presence of a time-dependent field gradient, J. Chem. Phys. 42, 288–292
(1965).

2. E. O. Stejskal, Use of spin echoes in a pulsed magnetic-field gradient to
study anisotropic, restricted diffusion and flow, J. Chem. Phys. 43, 3597–
3603 (1965).

3. J. Kärger and W. Heink, The propagator representation of molecular trans-
port in microporous crystallites, J. Magn. Reson. 51, 1–7 (1983).

4. P. P. Mitra, P. N. Sen, L. M. Schwartz, and P. Le Doussal, Diffusion propa-
gator as a probe of porous media, Phys. Rev. Lett. 68, 3555–3558 (1992).

5. M. D. Hürlimann, K. G. Helmer, L. L. Latour, and C. H. Sotak, Restricted
diffusion in sedimentary rocks. Determination of surface-area-to-volume
ratio and surface relaxivity, J. Magn. Reson. A 111, 169–178 (1994).

6. L. L. Latour, P. P. Mitra, R. L. Kleinberg, and C. H. Sotak, Time-dependent
diffusion coefficient of fluids in porous media as a probe of surface-to-
volume ratio, J. Magn. Reson. A 101, 342–346 (1993).

7. L. L. Latour, R. L. Kleinberg, P. P. Mitra, and C. H. Sotak, Pore-size distri-
butions and tortuosity in heterogeneous porous media, J. Magn. Reson. A
112, 83–91 (1995).

8. P. T. Callaghan, “Principles of nuclear magnetic resonance microscopy,”
Oxford University Press, Oxford (1991).

9. P. T. Callaghan and J. Stepisnik, Generalized analysis of motion using mag-
netic field gradients, in “Advances in magnetic and optical resonance” (W.
S. Warren, Ed.), Vol. 19, pp. 326–389, Academic Press, San Diego (1996).

10. J. Stepisnik and P. T. Callaghan, The long time tail of molecular velocity
correlation in a confined fluid: observation by modulated gradient spin-echo
NMR, Physica B 292, 296–301 (2000).

11. P. T. Callaghan and J. Stepisnik, Frequency-domain analysis of spin mo-
tion using modulated-gradient NMR, J. Magn. Reson. A 117, 118–122
(1995).
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